A learning heuristic for space mapping and searching self-organizing systems using
adaptive mesh refinement

Carolyn L. Phillips?

“Mathematics and Computer Science Division
Argonne National Laboratory, Lemont, IL, 60439, USA

Abstract

In a complex self-organizing system, small changes in the interactions between the system’s components can result in different
emergent macrostructures or macro-behaviors. In chemical engineering and material science, such spontaneously self-assembling
systems, using polymers, nano- or colloidal scale particles, DNA, or other precursors, are an attractive way to create materials
that are precisely engineered at a fine scale. Changes to the interactions can often be described by a set of parameters. Different
contiguous regions in this parameter space corresponds to different ordered states. Since these ordered states are emergent, often
experiment, not analysis, is necessary to create a diagram of ordered states over the parameter space. By issuing queries to points
in the parameter space, e.g performing a computational or physical experiment, ordered states can be discovered and mapped .
Queries can be costly in terms of resources or time. In general, one would like to learn the most about a space for the fewest total
number of queries. Here we introduce a learning heuristic for issuing queries to map and search a two-dimensional parameter space.
Using a method inspired by the adaptive mesh refinement method, the heuristic iteratively issues batches of queries to be executed
in parallel, based on what has been learned from previous iterations. By adjusting the search criteria of the heuristic, different types
of searches (e.g. a uniform search, exploring boundaries, sampling all regions equally) can be flexibly implemented. We show
that this method will densely search the space in the limit of infinite queries while preferentially targeting certain features of space.
Using numerical examples, including a study simulating the self assembly of complex crystals, we show how this heuristic can
discover new regions and map boundaries more accurately than a uniformly distributed set of queries.

Keywords: self-assembly, optimization, adaptive mesh refinement

1. Introduction

Systems of simple components that adaptively self-organize
in response to small changes in their environment have been an
area of active research in many fields for decades[1, 2]. In ma-
terial science and chemical engineering, self-assembly offers a
novel avenue for engineering materials with precise structure.
The principles that govern how to predict and control the self-
assembly process, e.g., the design rules for creating a system
that organizes into a desired structure[3], are still being discov-
ered and explored.

The resultant large-scale structure often results from the bal-
ance of many small-scale interactions. Complex structures can
arise from the frustration between competing interactions. Thus
the emergent structure can be exquisitely sensitive to small
changes. For example, Shevchenko et al.[4] show that the struc-
tural diversity of binary nano particle superlattices results from
varying the particle size ratio, tuning the electrical charge, and
adjusting the relative concentration of the two species. Noor-
duin et al.[S] demonstrate experimentally that sequential mod-
ulations of environmental conditions, e.g. CO, concentration,
pH, and temperature, control the directional structure growth
of carbonate-silica microstructures, from blossoming to form
stems, vases, and corals, to curling to form spiral and leaf struc-
tures.

Preprint submitted to Computer Physics Communications

When the interactions between the components can be
engineered[6], experimentation can be the only way to deter-
mine how the large-scale emergent structure is impacted. The
engineer-able degrees of freedom of a system define a contin-
uous parameter space and each experiment is a single point in
that space. It is generally far simpler to vary parameters in a
computational simulation of a complex system than in an phys-
ical realization. Such simulations are still functionally experi-
ments because the outcome of each set of parameters can usu-
ally not be predicted analytically. Such simulations are useful
for exploring a parameter space, generating intuition and de-
sign principles as to how competing forces interact, and guid-
ing experimental effort to the more fruitful regions of parame-
ter space. For example, Engel and Trebin[7] identify parame-
ters where geometrical frustration causes two-dimensional qua-
sicrystals to self-assemble. Nguyen et al.[8] show that small
changes in a model of a swarm of self-propelled particles causes
the swarm to change form from a ball, to a ring, to a torus, to a
shell shape. The torus occurs in a small region of the parameter
space. And Vernizzi et al.[9] find that by changing the relative
fraction of two components that compose an elastic shell, irreg-
ular and regular polyhedra arise spontaneously from buckling
of the membrane. They identify a parameter regime where less
symmetric shells form that are distinct from the more standard
icosahedral or spherical shells.

October 21, 2013

Experiments, even computational experiments, have a cost
in time and resources. Given a parameter space of interest and
a experimental method of querying points in the space', how
should such queries be distributed to maximize the amount of
information gained about contiguous regions of ordered struc-
tures? Commonly, a two-dimensional parameter space is con-
sidered and queries are distributed on a uniform grid[7-11].
However, this distribution strategy means, first, that each re-
gion is sampled in proportion to its fractional area, regardless
of the interest in the region, and second, the cost of the exper-
iment, and therefore the number that can be performed, uni-
formly determines the resolution of the distribution of queries.
Even though, in practice, information from completed experi-
ments arrives staggered in time, often in batches, information
from already completed experiments is not used to improve the
exploration of the space.

Here we propose a heuristic for iteratively distributing exper-
iments, or queries, in a parameter space that learns from already
completed experiments. This heuristic is inspired by the adap-
tive mesh refinement (AMR) method used in some finite ele-
ment method simulations. The objective of the heuristic is to
increase the resolution of information about small regions, or
region of special interest, improve the boundary resolution be-
tween regions, and/or search for new regions along boundaries
or in unexplored space, depending on how the search heuristic
is implemented. That is, the heuristic is flexible and the search
type can be adjusted, even between iterations of the search.

This method differs from other space searching methods in
that the nature of the space being searched is different. Meth-
ods that use surrogate models, such as Kriging[12], try to model
a continuous response surface over a parameter space. Evolu-
tionary algorithms attempt find the minimum of a function in a
high dimensional space[13]. In the case of this problem, there
is no explicit continuous differentiable function defined over the
space. Rather, the function over the space is a classification that
subdivides the space into contiguous regions that share a dis-
crete experimental outcome. Also, the objective is not to find a
peak, but to discover the regions that are present.

In Section II, we briefly review Adaptive Mesh Refinement
and then introduce our space searching heuristic. We introduce
several measures for ranking the elements of a mesh. In Section
III, we show that, in the limit, this heuristic densely distributes
queries in the search space and thus, every contiguous region in
the space is guaranteed to be found. In Section IV, we provide
numerical examples to show how changing the weights for the
different measures creates different kinds of searches. Using
five cases, we perform a sensitivity analysis over the weight-
ing of three terms. We then apply the method to an example
of a space-searching problem involving the self-assembly of
Lennard-Jones-Gauss particles into 2D crystals. In Section V,
we provide concluding remarks.

'A query could be an experiment, a simulation, consulting a database, or
any other action that classifies a parameter point.

2. A Learning Heuristic

First we discuss the assumptions used in this paper. We will
assume that a parameter space can be subdivided into a finite
number of simple connected contiguous regions. Each point
in the parameter space represents a legal combination of pa-
rameters. A query performed at a point returns a label, or a
classification of the ordered structure formed by that particular
combination of parameters. A query at a given point in the pa-
rameter space will always return the same label. The cost of
each query is independent of the other queries. We also assume
that queries are expensive, that is, the cost of simply finely dis-
tributing queries uniformly over the entire space is prohibitive.

2.1. Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR)[14, 15] is a method de-
veloped for generating numerical solutions of partial differen-
tial equations that is commonly used for problems in computa-
tional fluid dynamics, hydrodynamics, astrophysics, and finite
element applications. In AMR, a space or object is subdivided
into a disjoint set of mesh elements. The mesh elements can
be triangles or quadrilaterals in 2D, or tetrahedrons, pyramids,
prisms, or hexahedrons in 3D, but are generally always convex
polytopes. Using an integrator, sets of real or complex values of
functions are calculated at the vertices or nodes of the mesh. In
regions where higher numerical resolution is desired, inserting
additional nodes refines the mesh. Larger mesh elements are
replaced by smaller mesh elements. Standardly, AMR refers
both to the algorithms that generate and refine the computa-
tional mesh and the integration method that advances the par-
tial differential equation values at each node. A large literature
exists of different algorithms for the initial mesh generation and
subsequent local refinement of the mesh. We propose a simple
adaptive search heuristic that uses the mesh generation and re-
finement algorithms (but not the integration methods) of AMR
to dynamically increase the density of queries in the regions of
higher interest. Given a contiguous region of parameter space
to be searched, the heuristic is briefly described as follows. (1)
An initial coarse conforming mesh is generated over the space,
subdividing the space into mesh elements. (2) A query is is-
sued for each unlabeled node of the mesh and, upon return of
the query, each unlabeled node is assigned a label. (3) A scor-
ing function is applied to the set of mesh elements. (4) A set
of highest ranked mesh elements are selected for refining, gen-
erating a new set of unlabeled nodes. (2)-(5) are repeated until
a stopping criterion is reached. The outline of the heuristic is
sufficiently general that there are many possible implementa-
tion choices with respect to mesh type, initial mesh generation,
mesh refinement method, the scoring function, and number of
elements to be refined per iteration. In the remainder of this sec-
tion we introduce one example implementation of this heuristic
in a two-dimensional parameter space.

2.2. Mesh Generation and Refinement

Let the parameter space to be explored be described as €,
a bounded polygonal region where all parameters have been
normalized to be bounded from -1 to 1. Given the predefined

geometry of the parameter space to be mapped, and a desired
number of initial queries, N, an unstructured mesh of triangles
is generated by a Delaunay triangulation algorithm[16]. Nodes
are placed on the edges of the parameter space, and then the
edges are triangulated. Nodes are then inserted into the centers
of circumscribed circles of large triangles until no triangle edge
exceeds a hmax, a prechosen positive constant. At the initiation
of the mesh, an hmax value is selected that is consistent with
the placement of N total nodes. A refinement of the mesh is
performed as follows. A set of triangular mesh elements is se-
lected for refinement. For this set, a regular refinement scheme
is used. That is, for each triangle, a new node is inserted at the
midpoint of each edge, which are then connected by three new
edges. Thus the original triangle is replaced by four similar tri-
angles. This step generates hanging nodes, that is, a node that
is on the edge of two cells but does not properly belong to one
of them. A longest-edge-bisection scheme[17, 18] is applied
to neighboring triangles until all hanging nodes are removed.
Thus, after refinement, the intersection of two non-disjoint,
non-identical triangles consists of either a common vertex or
a common side and all mesh elements are triangles. The reg-
ular and longest-edge-bisection refinement schemes combined
guarantee that the smallest angle in the mesh is bounded to half
the smallest angle of the original triangulation.[17, 18] Thus the
individual triangles do not deviate too far from equilateral tri-
angles. By using a mesh refinement scheme that generates no
hanging nodes, the data structure of each mesh element remains
fixed over all iterations. Each mesh element is a triangle with
three nodes and three edges. The disadvantage of this mesh re-
finement scheme is that the number of new nodes generated af-
ter each refinement step is not a fixed number relative to the set
of triangles initially chosen to be refined. We choose to handle
this by adding elements to the list to be regularly refined, until
the resultant total refinement generates more than a threshold
number of nodes. An example of a refinement scheme applied
to a triangular mesh is shown in Figure 1. On the top is an
example of an unstructured triangular mesh that has been gen-
erated for a square parameter space. The red triangles have been
selected for refinement. On the bottom, all new nodes are cir-
cled. Each red triangle has been split into four similar triangles
and a longest-edge-bisection scheme has been used to resolve
hanging nodes in neighboring triangles. Per reference [18], the
additional refinements to resolve hanging nodes are guaranteed
to terminate.

This heuristic was implemented using the mesh initialization
and refinement software in the MATLAB PDE Toolbox[19]. In
a test case, an implementation generated 2,611 queries over 50
iterations (returning 52.2 points per iteration on average) in 4.17
minutes. Thus this step is not expected to be rate limiting rela-
tive to the time to complete a query to label a node.

2.3. Scoring Function

In this section, we discuss a method for selecting a batch of
mesh elements to refine. This selection uses a scoring function.
Given the nodes of a mesh element and their labels, the scoring
function returns a scalar number that indicates how desirable it

Figure 1: (Top) An example triangulated mesh for a square parameter space.
The red triangles have been selected for refinement. (Bottom) The red triangles
have been refined. The new nodes are circled.

is to refine the mesh element. That is, given a mesh element 7',
the scoring function is,

AT) = F {1 {ph, ey

where {/} and {p} are the set of labels and coordinates of the
nodes of T, respectively, and where, the more desirable it is the
refine the mesh element, the higher the score A(T').

The scoring function can be tailored to score different aspects
of a given mesh element. We present several possible scoring
function terms, area, number of labels, novelty, and minimum
diversity, which can be weighted to create different kinds of
searches.

waA(p}) wiN{) wrF({l})
i =
77({ }’ {p}) Amin i Nmax " Fmax
2.3.1. Area
The first term is equal to the area of a mesh element, A({p}),
scaled by the area of the smallest mesh element that is present
in the mesh, A,,;,, and weighted by a factor wy.

+wyupM({1}).(2)

2.3.2. Number of Labels

The second term is equal to the number of unique labels con-
tained in the label list {/} of a mesh element, and is normalized
by the current largest number of unique labels, N,,,., (Where,
for triangular mesh elements, 1 < N, < 3). The term is
weighted by wy.

2.3.3. Novelty
The third term is a measure of the novelty of the labels of the
label list of a mesh element,

3
F({lp) = 108{ —] 3

where [;, for j = 1,2,3, are the three labels of {/} and f(I;) is
the frequency of the label /; over all the nodes of the mesh. This
term is normalized by the largest novelty value calculated over
all the mesh elements, F,,,, and weighted by wg.

2.3.4. Minimal Diversity

The fourth term is a Boolean that measures whether the la-
bels of the mesh element satisfy a minimal level of unique label
diversity,

(1 NG > 1
M({”)‘{o i NG < 1 “)

and is weighted by wyp.

3. Mathematical Analysis

In this section we will show that as long as the weighting
term, wy > 0, the method described in Section II is sufficient
to generate a dense set of node points in the parameter space in
the limit of the number of node points approaching infinity.

Let Q be a bounded polygonal region with an initial con-
forming triangulation of N triangles. Since each refinement of
a triangular mesh element is a nested refinement, that is, each
refinement is contained inside a single prior refinement at each
refinement level; we can construct a forest, i.e., a set of tree
graphs, that describes the state of the mesh. We construct one
tree for each of the mesh elements of the initial triangulation
of Q. Consider a triangular mesh element 77, j € [1,.., N] of
the initial triangulation. The root of the tree is Té . Each ver-
tex in the tree is a triangular mesh element nested inside T({.
Each vertex, except the root, is connected to its preceding tri-
angular mesh element (the triangle from which it was directly
refined) by an edge. If it is not a leaf, it is also connected to ¢
vertices representing the triangular elements that result from a
refinement of the element. (For regular refinements ¢ = 4, for
longest-edge-bisection refinements, ¢ = 2). Thus, the leaves of
the tree represent the current state of the refinement of the orig-
inal element Té . Figure 2 depicts an example refinement and
tree. A triangular mesh element Ty is shown at three stages of
refinement, the initial mesh element, a regular refinement of the
initial mesh element, and regular refinement of only the bottom

To
// \\
T Tiz2 Ti3 T4
AN PAANN
T21T22T23T24 TosT26T27T28

Figure 2: (top) A diagram depicting the three stages of the refinement of a
triangular mesh element 7y and (bottom) the tree that describes the refinement.

two elements 7 1, and T} 4. The leaves of the tree at the bottom
of Figure 2 describe the current state of the mesh element.

Each point p in Té, that is not a node of a triangular mesh
element can be found in one and only one leaf of the tree. Let
each vertex of the tree be labeled Ti yiwhere n is the distance (i.e.
number of refinements) from the root node and i is an arbitrary
unique index. When a triangle is refined into sub-triangles, the
sub-triangles are equal in area, and the ratio of the area of each
sub-triangles relative to the original triangle is f, where, f = 0.5
and f = 0.25 for a longest-edge-bisection refinement scheme
and a regular refinement, respectively.

Let S = {s1, 52, 53,} be a sequence of triangular mesh ele-
ments that are selected to be refined in the order of the sequence,
Sk € Tii. Note that in the generation the sequence S, a member
of the sequence is only required to exist in the mesh after the
refining of the prior members of the sequence. (For complete-
ness, each member of sequence is associated with a refinement
method, regular or longest-edge-bisection, to be used for that
element.) Let P¥ be the set of all the leaves of all the trees after
the refinement of element s; of S. WX uniquely describes the
current state of the refinement.

We introduce the following condition for a sequence S:

Definition 3.1. Largest Triangle Condition If T is the mesh
element with the largest area after the refining of mesh element
index sy of the sequence S, then T will be element sy of the
sequence, where k < k' < k+ K, and K is a positive integer.
If the triangular element T with the largest area is not unique,
then one member of the set of the largest elements will be in the
sequence with the index k’.

Theorem 3.2. If the next triangular mesh element sy, is se-
lected to be the element that scores the highest per the scoring
function Eqn.2 after the refinement of s, and wa >y > 0, then
the Largest Triangle Condition is satisfied.

Proor. We provide a proof by contradiction. After the refine-
ment of s; of a sequence S, assume that A is the maximum
area of all the mesh elements of W* and T is the set of all tri-
angular mesh elements T, T € WX, of area A, thus I C WK,
Assume that no element 7 € I' is found in the sequence S as
k — oo. Or, equivalently I' C WYX Wk’ > k. This means that
for all WX,k > k, there must exist at least one other triangu-
lar mesh element 7’ with an area A’ < A such that, VT € T,
A(T") > AT), or,

WAA, WLN, WFF/

Amin Nmux Fmax " WMDM’ g (5)
waA wiN wpF
+ +wyupM 6)
Amin Nmax F max Mp
which can be rearranged to
N - N F'—-F
ml =D D o - ()
wa(A—-A")
_ 8
Amin ()

The right side of the inequality must be less than the upper

bound of the left side, so,
’
WL+WF+WMD>M (9)
Amin

Let A, be the area of largest triangular element of ¥* that is

not contained in I'. Let Ay = max(fA, A,,), that is, the larger of

the area of a triangle in a refinement of a largest triangular ele-

ment of P¥ or the area of the second largest triangular element

of WX, Because the maximum area of all the triangles nested in

an initial triangle is a decreasing function as kK’ increases, the
following must also hold

waA - A wa(A — Ao)

+ + 10
L wr Y > Amin Amin ()
And therefore, for k' > k,
A-A
Apin > _Wa(A-Ag) (11)

wr +WwWr +Wyp

or there is a lower bound on the area of the smallest mesh ele-
ment as k — oo and because w4 > y > 0, the lower bound is
bounded away from zero. Let A, equal the right side of Eqn.11.

We consider the initial set of a triangular mesh elements
{T}},j € [1,..,N], each with area A/ and the tree that result
from uniformly and indefinitely refining these elements . The
triangular element T’} has area less than or equal to f"A/, where
f = 0.5. Let max({A/}) be the maximum initial area of the

initial triangulation. For m > In (-2} /In(f), all mesh ele-

ments Tlii have areas less than A;,. We note that m is positive
and finite. Each refinement of a single mesh element produces

5

no more than ¢t = 4 new elements. Thus there is a finite number
of vertices {Tlfm} in the set of trees such that m’ < m. Specif-
ically, the size of the set {T,i ,’i}, such that m’ < m is less than
NZZ’-”_1 4 < Nm—- 14" . Thus if k—k’ > N(m—1)4""!, then
all triangular elements of the mesh must have a smaller area Ayp.
This contradicts Eqn.11.

Therefore, an element T € I" must be in the sequence S,
T =s,k<k <k+N(@m- 4t

Next we need to show that it is not necessary that every trian-
gular element added to the sequence S to be the highest scoring
element for the Largest Triangle Condition to hold. For exam-
ple, triangular elements can be added to S to remove hanging
nodes.

Corollary 3.3. Assume that the sequence S is constructed as
follows. For 0 < K < K.y, K triangular mesh elements are
selected for the sequence S, {Si+1, ..., Sk+x } such that K’ of the
elements, 0 < K’ < K are the K’ elements that score the high-
est per the scoring function Eqn (2.1) after the refinement of sy.
The remaining K — K’ mesh elements are selected by any arbi-
trary criteria. This method of constructing the sequence S also
satisfies the Largest Triangle Condition as long as wa >y > Q.

Proor. This holds trivially. If I" is the set of elements with the
largest area after the refinement of sy, then, per the argument
above, after no more than N(m — 1)4"~! triangular mesh ele-
ments have been selected for the sequence, T has either been
selected or 7 must have the highest score and will be in the set
of the K’ highest-scoring elements selected in the next set of K
elements.

Now we will show that continually refining the triangular
mesh element that contains a point p will generate an arbitrar-
ily close node point to p. Let p be a point in a triangular mesh
element 7T that has area A. Per references 4, 5, the refinement
scheme used guarantees the minimum angle is bounded away
from zero.

Theorem 3.4. If the minimum angle of T is «, then an upper
bound on the distance between the point p and a node of the

triangle is V2Asin(n — 2a)/sin (@).

Proor. The triangle with the longest internal length that can be
constructed with a minimum angle « is an isosceles triangle
with two angles «, and one angle m — 2a@. The expression above
is the length of the longest edge of such a triangle.

Theorem 3.5. For a given point p € Tg, there is a triangular
element Tr/l ; containing p such that p is arbitrarily close to a
node of T}f -

Proor. The triangular element represented by T’{ ; has area less

than or equal to f"A/, where f = 0.5. An upper bound on
the distance between a point p in T,il. and the nodes of Tr]t,i is

therefore f"/2C, where C = /2A/sin(r — 2a)/sina is constant.

Since f < 1, for any € > 0, there is an positive integer n, such
that f/2C < e.

Theorem 3.6. If a sequence S satisfies the Largest Triangle
Condition, then every mesh element will be refined within a fi-
nite number of refinements.

Proor. We consider the worst case where the mesh has a single
smallest triangle 7" with area A; and N triangles of area A; and
show that the smallest triangle must be selected for refinement
after a finite number of refinements.

Assume a sequence S has been generated that satisfies 3.1.
Consider the set of leaves on the set of trees for the N triangles
after the refinement of element s; of sequence S. If I is the set
of leaves with maximum area, one element of I is guaranteed
to be refined in K refinements. An upper bound, therefore, for
the number of refinements until 7" has the largest area of all the
mesh element is therefore KN)7 | 4° < KNm4™. In this many
refinement steps plus K, the initially smallest triangle must be
selected to be refined.

We have shown that if a sequence of triangular elements S is
generated satisfying the condition 3.1, then this sequence will
generate a dense set of nodes in the space in the limit of the
sequence length approaching infinity. The weighting terms of
Eqn.2 can thus be modified to create different search patterns
while still satisfying that all contiguous closed regions in Q
must be eventually sampled.

4. Numerical Examples

4.1. Example Case

In this section we will demonstrate how the different terms of
Eqgn (2.1) can create different search patterns. Figure 3(a) shows
the two-dimensional five-region test case that will be searched.
The five regions are (1) light purple, (2) green, (3) dark pur-
ple, (4) red, and (5) orange, with areas 3.1832, 0.3911, 0.3911,
0.0314, and 0.003, respectively. In this test case, region 1 is the
largest region, region 5 is the smallest but found at the boundary
between region 2 and 3, the second largest regions, and region
4 is the second smallest region which is only adjacent to the
largest region 1.

In figure 3(b), a mesh of 852 nodes was generated over this
space. This represents a roughly uniform distribution of queries
over the space generated with no learning. Region 1-5 are sam-
pled 688, 77, 78, 8, and 1 times respectively, in approximate
proportion to their area. This uniform mesh is used for compar-
ison with the different searching methods.

Each iterated search is initialize with the mesh and label in-
formation shown in Figure 3(c). Regions 1, 2, and 3, have been
sampled 43, 5, and 2 times respectively. The two smallest area
regions 4 and 5 have not been sampled in the first iteration.

To explore how the different terms create different search pat-
terns we consider five example searches of the space shown in
Figure 4(a). In each search, wy=1e-4, and the weights wy, wg,
and wyp are individually set to 1.0. We consider a final search
example where three non-zero terms, wy, wp, and wyp are
combined. Each search is initialized with the roughly uniform
mesh of 50 queries shown in Figure 3(c). In each subsequent it-
eration, each search selects a list of triangular elements to refine

-1 0 1

Figure 3: (a) The 2D five-region test case. (b) A uniform triangulated mesh of
852 nodes. (c) A uniform triangulated mesh of 50 nodes.

based on its scoring function, such that at least 50 queries are
generated. Generally a range of 50-60 queries are generated.
Each search is performed for sixteen total iterations. Figure
4(b-f) shows the results of these five searches compared to the
single-iteration uniform search shown in Figure 4(a).

We use three measurements to compare the searches. (1)
The total number of queries in each region. (2) The iteration
at which region 4 and 5 are first found, and (3), the error in the
approximation of the area of each region. For each search, a
plot shows how many times each region has been sampled after
each iteration. Note that the scaling of the y-axis of each plot is
not kept the same in figure 4(b-f).

Measure (3) is generated by performing a Voronoi tessella-
tion of the nodes in the parameter space and assigning the area
of each Voronoi cell to the label at its center.[20] Voronoi cells
are bounded by the boundary of the space. The approximated
area of each region is the sum of the area of the Voronoi cells

Region 1

Sampled
Region 1
Region2 m 77
Region3 m 76
Region4 = 8
Region 5 1

688

Error in Area Estimation
Region 1 -0.39 %
Region2 m 2.72%
Region3 m 1.94%
Region 4
Region 5

m-10.73 %
-77.14 %

1 Iteration, 852 queries

w, =1e-4,w, =1.0, w. = 0.0, w,,;, = 0.0 oo

\percent error
o

—
o

16 iterations, 831 queries

5 10
iterations

15

sampled

5 10
iterations

15

Number of Times Region

Region 2 — - Region 3 —&— Region 4 —— Region 5

w, =1e-4,w, =0.0, w.=0.0, w,,, = 0.0
4 t ‘ M0 7800

sampled

(b)

-
o
=

16 iterations, 811 queries

percent error
o
N
[

N
=)
S

5 .10 15
iterations

o

w,=1.e-4,w, =0.0,w.=0.0,w,,=1

sampled

.
@
£
[0
S
[0
o
B 5 10 15
iterations
400
el
3
o
£)
[
(]
510 15
100,

X,WT&,.NM

percent error
o

16 iterations, 835 queries

IR
)
IS)

5 10
iterations

15

Figure 4: A comparison of how varying the weights creates different search patterns for the test case from Figure 3a.

with the regions label. The approximated areas are compared to
the true areas to determine the percent error. For each search, a
plot shows the percent error of the measurement of each region
after each iteration of the search.

Measurement (2) can be directly determined by examining
the percent in error of area plot. When region 4 and 5 are not
found, the percent error in their area is 100%. By noting at
what iteration the percent error of region 4 and 5 drops below
100%, it is straightforward to tell when they are discovered by
the search. For example, in Figure 4(b), region 5 is never found,
and in Figure 4(c), region 5 is found after 4 iterations.

In Figure 4(a), a roughly uniform mesh of 852 nodes is gen-
erated in a single iteration. In Figure 4(b), a roughly uniform
mesh of 811 nodes is generated over 16 iterations by using
a scoring function that only refines the largest triangular ele-
ments. Neither example learns from the results of the queries.
Not surprisingly, a mesh initialized in a single iteration pro-

duces a more uniform distribution of nodes than a mesh gener-
ated by iteratively refining the largest triangular elements. The
latter, for example, did not find region 5, while the former sam-
pled it once. In both cases, regions were sampled in approxi-
mate proportion to their area and the approximate area of each
region has significant error.

In Figure 4(c), the scoring function has an area term and a
number of labels term from section 2.C.ii. This scoring function
causes the search to preferentially refine triangles with three la-
bels, found where regions 1, 2 and 3 meet and where regions
2, 3, and 5 meet. The focus on these small parts of the space
results in very small triangular mesh elements, and at iteration
eight, the search transitions to an area-focused search. This can
be seen in the sudden increase in queries of region 1 and that
region 4 is found at iteration eight. For this search, in any given
iteration there are fewer triangular mesh elements with three
labels to select than triangles requested for refinement, so el-

ements with two labels are selected as well. Thus the search
also explores the boundary of region 2 and 3 and finds region
5. In Figure 4(d), the scoring function has an area term and a
minimum diversity term from section 2.C.iv. The search now
focuses on the boundary formed by region 1, 2, 3, and 5. The
search resolves any boundary with equal preference. A bound-
ary search finds region 4 in two iterations. Over the 821 total
queries, the search does not discover region 4.

In Figure 4(e) the scoring function has an area term and a
novelty term from section 2.C.iii. The novelty term drives the
search to balance the number of queries of each region. For
example, region 5 is discovered in three iteration and by the
seventh iteration has been sampled the same as region 1. The
distribution of nodes in interior of each region is roughly uni-
form. Noticeably, the balanced number of queries of the five
regions causes the area error to drop quickly.

In Figure 4(f), the scoring function has an area term, a nov-
elty term, and a minimum diversity term. This results in the
search both balancing the number of queries between regions
and preferentially exploring boundaries. Region 5 is discovered
in three iterations. Region 4 is not discovered for ten iterations,
but then is preferentially sampled. The errors in the areas after
16 iterations are the smallest of all the searches shown.

Region 5 is an order of magnitude smaller than region 4. It
was only sampled once by the search of Figure 4(a) and not
at all by the search of Figure 4(b). However, for each search
shown in Figure 4(c-f), the region was found sooner than region
4. This supports the conclusion that using a non-uniform search
pattern to find new regions is the most effective in spaces where
regions tend to be adjacent to more than one regions or regions
of similar areas. Islands, small area regions adjacent only to a
single large area region, are difficult to find.

4.2. Sensitivity Study

We perform a study of the sensitivity of the search to the three
parameters {wa, wr, and wyp}; wy is set to zero. We consider
all combinations of the following parameter sets, wq = {1, le-1,
le-2, 1e-3, le-4}, wr = {0, 0.25, 0.5, 0.75, 1.0}, and wyp = {0,
0.25, 0.5, 0.75, 1.0}. For the sensitivity study, we consider the
five cases shown in the first column of Figure 5.

The first case divides the space into nine equal regions. In
the second case and third case, the space has ten regions, nine
of which are identical in area. In the second case the regions are
adjacent and in the third case they are islands. In the fourth and
fifth case, the space has ten regions, nine of which have areas
that decrease by a power law. In the fourth case the regions
are adjacent and in the fifth case they are islands. To measure
the quality of the search, we use the summed absolute value
of the error of the area of the nine or ten regions, using the
Voronoi tessellation described above to measure the area. We
subtract from this value the error that results from performing
a search where only wq > 0. Thus we are measuring whether
the additional terms improve the search relative to an iterated
uniform search.

We show cross-sections of the results of the sensitivity study
in Figure 5 (wg = wyp). Each plot shows the sum error in the

8

calculation of the areas of the nine or ten regions minus the sum
error for the uniform case (e.g. wp = wyp = 0). If the value
is negative, the search had less error than the uniform search
pattern, and if the value is positive, the search had more error
than the uniform search pattern.

We first observe that, for Case 1, no term makes a signifi-
cant difference. For Cases 2, 3, 4 and 5, we observe that the
most important term is wy. If the space has connected regions
(Case 2 and 4), wy should be small. If the space has islands
(Case 3 and 5) w4 should be large. We observe that even if
a space primarily has island regions, that the search can be im-
proved by positive wyp and wr terms. If wy is chosen correctly
for the space, then positive values of wyp and wr improve the
search relative to a uniform search. If w, is chosen poorly for
the space, then positive values of wyp and wr can sometimes
worsen the search relative to a uniform search. On the right two
columns of Figure 5, we compare a uniform search of the space
to a search performed using {w, = le-2, wyp = 0.5, wg = 0.5}
if the regions are islands and {w4 = le-4, wyp = 0.5, wg = 0.5}
if the regions are adjacent. The improved the number queries
of the small regions is evident relative to the uniform search.

4.3. Numerical Example using 2D Lennard Jones-Gauss Sys-
tem

In this section we consider the application of the method
from Section 2 to a complex system that is explored by real
queries.

The 2D Lennard Jones Gauss (LJG) system consists of parti-
cles confined to move in a plane that interact via a double-well
pair potential function that is a function of €, ry, and o?. The
simple or complex crystal assembled by the particles is depen-
dent upon the value of the three parameters. In reference [7],
Engel and Trebin distributed 5500 queries on a fine grid, € in
[0.1, 5.0] at 0.1 increments, and ro in [1.01, 2.1] at 0.01 incre-
ments, and o> = 0.02. Each query corresponded to performing
a simulated annealing of 1024 particles from a high tempera-
ture (liquid/gas state) to a low temperature (crystal state) over
2x10° molecular dynamics (MD) time steps at zero pressure. In
each simulation, the particles condense into one or two droplets.
A crystal structure was identified from the particle positions
in final frame of the MD trajectory. Seven crystal structures
were identified, hexagonal, square, decagonal quasicrystal, do-
decagonal quasicrystal, honeycomb, and rhombic. These crys-
tal structures were found over eight regions (the square phase
was found in two non-contiguous regions). In reference [21],
Phillips and Voth applied a shape matching and machine learn-
ing analysis to the data set and discovered an eighth phase, an
amorphous triangle/square phase, in a small region between the
hexagonal and square phase.

For this study, queries corresponded to a simulated annealing
of 1024 particles over 5x10° molecular dynamics (MD) time
steps. All data was generated on NVIDIA Tesla M2070 GPUs,
at the Tukey cluster at Argonne National Laboratory.

For a system generating real data, the results of each query
must be classified. For this study, data was labeled by using
a small training set of fifty examples and a supervised learn-
ing method. An S-2 global shape descriptor[21] was calculated

wp=1 —o—

400

N
=
S

wp=1e-1 — — wp=1e-2 o0— wp=1e-3 ¥

-200

Sum Error -
Sum Uniform error
o
b
|

-400

400

[N
=
S

(b)

Sum Error -
Sum Uniform error

®

S o

0 0.2 0.4 0.6 0.8

w,=1e-4, w.=0.5, w,,,=0.5

o

(c)

Sum Error -
Sum Uniform error

S

<3 o

0 0.2 0.4 0.6 0.8

w,=1e-2, w.=0.5,w,,,=0.5

1
A
=
S

0 0.2 0.4 0.6 0.8

400

N
S
S

-200

Sum Error -
Sum Uniform error
°

-400

w,=1e-4, w.=0.5,w,,,=0.5

IS
S
S

N
=
S

(e) [|

|
N
=
S

Sum Error -
Sum Uniform error
o

w,=1e-2, w.=0.5, w,,, = 0.5

7 "

I
A
8

o

WE = Wyp

0.2 0.4 0.6 0.8

Figure 5: A sensitivity study of the impact of the weights {wa, wr, wyp} for five cases.

for the coordinate set generated by each query or the training
set. Using this descriptor as the feature vector and a euclidean
distance metric, a k-nearest neighbors classifier (k=1)[22] was
used to classify the result of each query, which was then visu-
ally confirmed.

A complication of real data is that some queries cannot be
granted a non-ambiguous label. Along the boundary between
two phases, the crystal found in the data may include a mixture
of the phases. This data may represent a true small two-phase
region, or the result of an unequilbrated simulation. If one of
the two phases is dominant, i.e. represents most of the coor-
dinate set, we classify the query result as that phase. If both
phases are approximately equally present, we use a special la-
bel to represent this. This label was treated as a unique label for
the purpose of calculating the minimum diversity score, but not
included in the novelty score.

In Figure 6, we compare the uniform distribution of 5500
queries to a uniform distribution of 1080 queries to 1071
queries issued over 20 iterations. The classification of the data
in the top plot of Figure 6, was generated by a machine learn-
ing and shape matching method discussed in more detail in
reference[21]. Dark purple data corresponds to data with am-
biguous labels per that method. In the Figure 6 middle left and
right plots, the uniform and refined mesh generated per Sec-
tion 2, are shown. The 20 iterations were generated using the
weights {wy = le-4, wy=0, wyp = 0.5, wp = 0.5}. The bottom
left and right plots of Figure 6 show approximated boundaries
of the regions based on the data collected. The boundaries were
generated by using a multi-class support vector machine with
radial basis function kernel (gamma = 20, C=3).

In Table 1, the number of times each data set queries each
region of the 2D LJG phase diagram is compared. The regions

5
“o5
0.1,
5
“o5
01y 15
o
5
“05
0.1, 5
o

10

“o5
0'11 1.5
o

Figure 6: (Top Center) 5500 queries distributed uniformly on a rectangular 55x100 grid. (Left) 1080 queries distributed uniformly. (Left Bottom) A support vector
machine generated partitioning of the space using the results of the uniform queries. (Right) 1071 queries distributed over 20 iterations. (Right Bottom) A support
vector machine generated partitioning of the space using the results of the iterated queries. The triangular meshes appear stretched because in the space where the

mesh us generated, the parameter space is normalized to a unit square.

in the table are listed in order of their area. Both uniform meth-
ods sample each region in rough proportion to its relative area
fraction of the phase diagram. The iterated method finds and
samples the smaller regions with more queries.

In the right bottom of Figure 6, we observe that the bound-
aries of the regions generated using the iterated method are not
as smooth as that of the uniformly distributed data. One way to
improve the boundaries of the regions is to change the weight-
ing parameters of the search. In Figure 7, we show the result
of 20 iterations, where the weight parameters are {w4 = le-4,
wr= 0, wyp = 0.5, wr = 0.5}, for the first 15 iterations and {wy
= le-4, w=0, wyp = 1.0, wg = 0} for the last 5 iterations.
The weight set of the first fifteen iterations prioritizes novelty,
boundaries, and area. The weight set of the last five iterations
prioritizes just boundaries and area. The result is a significant
smoothing of the regional boundaries.

5. Conclusions

In this paper we have introduced a learning heuristic for is-
suing queries to search for and map regions in a 2D parameter

space. This method applies a conforming mesh to the space
and determines where the mesh should be refined based on a
formula that ranks the mesh elements. We have shown that,
as long as the ranking function includes an unbounded mesh
element area term and all other terms are bounded, the heuris-
tic will densely fill the space with queries in the infinite limit.
We applied this heuristic to several test numerical cases, in-
cluding a mapping of the parameter space of the 2D Lennard-
Jones Gauss particle system, where eight simple and complex
crystals are known to self-assemble. We found that choosing
different weights for the ranking function terms changes the
type of search performed. We found that both spaces with is-
land regions and spaces that only have connected regions can
be searched more efficiently than a uniformly distributed query
set when using an appropriate weighting for the mesh element
area term. We also found that by changing the set of weights
being used after a given iteration, the search strategy can be
changed from emphasizing discovery to emphasizing mapping
boundaries, as meets the wants of the investigator.

There are many ways this heuristic can be extended and mod-
ified. For example, using a tetrahedral mesh, this heuristic can

11

Table 1: Comparison of the number of queries

Phase | Uniform (grid) | Uniform (mesh) | Tterated (20) | Iterated (15/5) |
Hexagonal (light blue) 3690 717 346 347
Dodecagonal Quasicrystal (light red) 947 179 111 136
Square (dark red) 464 101 179 208
Decagonal Quasicrystal (dark green) 152 38 83 73
HoneyComb (dark blue) 108 18 91 82
Pentagonal (light green) 34 7 62 38
Rhombus (dark orange) 29 7 61 66
Amorphous Triangle/Square (dark purple) 6 1 67 50
boundary (light orange) 70 11 71 60
Total \ 5500 1080 1071 1060

2.5-

0.11

2.5

0'11 1.5 2

0

Figure 7: (Top) 1060 queries distributed over 20 iterations. For the last 5 itera-
tions, a weight set of {wq = le-4, wyp = 1.0, wp = 0.0} was used. (Bottom) A
support vector machine generated partitioning of the space using the results of
the iterated queries.

extended to a three dimensional parameter space. In the above
work, a triangular mesh refined by an heuristic that creates no
hanging nodes was chosen for simplicity. A consequence of
this choice is that some triangular elements that are not highly
ranked are also refined. However, the heuristic can easily be
modified to use a structured mesh with rectangular or hexahe-
dral mesh elements, if a method for accommodating hanging
nodes, that is, an uneven number of labels per element, can
be developed in the ranking formula. Also the ranking func-
tion proposed in Equation 2 can be tailored to direct knowledge
about the space or other subjective knowledge of what features
are of interest in a given search.

The end goal of heuristics such as this is to eventually achieve
automated mapping and discovery in low-dimensional spaces,
with minimal intervention required from the researcher. To our
knowledge, this heuristic is the first of its kind in addressing

a classification problem in a continuous space. Full automa-
tion of this heuristic requires coupling it with an algorithm that
can classify the data from queries as it is acquired and recog-
nize when data is novel and thus warrants a new classification
category. Reference [21] and the machine learning tools im-
plemented in Section 4.3 represent first attempts to achieve this
coupling. There is a large potential for algorithmic develop-
ment in this area. We anticipate that methods for organizing
and optimizing searches through different kinds of parameter
spaces will play an important and growing role in accelerating
scientific discovery, especially as computational models mature
as tools for ab initio discovery.

6. Acknowledgements

This research was supported in part by a grant from the Office
of Naval Research and in part by the U.S. Department of En-
ergy, Office of Science, under Contract DE-AC02-06CH11357.
C.L.P. was funded by the Office of the Director through the
Named Postdoctoral Fellowship Program (Aneesur Rahman
Postdoctoral Fellowship), Argonne National Laboratory. We
acknowledge numerous useful discussions with Todd Munson,
Stefan Wild, and Tim Tautges. We than Todd Munson for re-
viewing the mathematical analysis. We thank Michael Engel
for providing the Injavis software package, Aaron Keys for the
SMAC software package. Both the k-nearest-neighbor clas-
sifier and the support vector machine used software from the
scikit-learn open source package[22].

References

[1] George M. Whitesides and Mila Boncheva. Beyond molecules: Self-
assembly of mesoscopic and macroscopic components. Proceedings of
the National Academy of Sciences, 99(8):4769-4774, 2002.

[2] George M. Whitesides and Bartosz Grzybowski. Self-assembly at
all scales. Science, 295(5564):2418-2421, 2002. doi: 10.1126/sci-
ence.1070821.

[3] Robert J. Macfarlane, Byeongdu Lee, Matthew R. Jones, Nadine Harris,
George C. Schatz, and Chad A. Mirkin. Nanoparticle superlattice engi-
neering with DNA. Science, 334(6053):204-208, 2011.

[4] Elena V. Shevchenko, Dmitri V. Talapin, Nicholas A. Kotov, Stephen
O’Brien, and Christopher B. Murray. Structural diversity in binary
nanoparticle superlattices. Nature, 439(7072):9, 2006.

[3]

[6

)

[7

—

[8

—_

[9

—

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

Wim L. Noorduin, Alison Grinthal, L. Mahadevan, and Joanna Aizen-
berg. Rationally designed complex, hierarchical microarchitectures. Sci-
ence, 340(6134):832-837, 2013. doi: 10.1126/science.1234621.

Sharon C. Glotzer and Michael J. Solomon. Anisotropy of building blocks
and their assembly into complex structures. Nature Materials, 6(7):557—
562, August 2007.

Michael Engel and Hans-Rainer Trebin. Self-assembly of monatomic
complex crystals and quasicrystals with a double-well interaction poten-
tial. Phys. Rev. Lett., 98:225505, Jun 2007.

Nguyen H. P. Nguyen, Eric Jankowski, and Sharon C. Glotzer. Thermal
and athermal three-dimensional swarms of self-propelled particles. Phys.
Rev. E, 86:011136, Jul 2012.

Graziano Vernizzi, Rastko Sknepnek, and Monica Olvera de la Cruz.
Platonic and Archimedean geometries in multicomponent elastic mem-
branes. Proceedings of the National Academy of Sciences, 108(11):4292—
4296, 2011. doi: 10.1073/pnas.1012872108.

Ines C. Pons-Siepermann and Sharon C. Glotzer. Design of patchy parti-
cles using ternary self-assembled monolayers. Soft Matter, 8:6226—-6231,
2012.

C. R. Iacovella C. L. Phillips and S. C. Glotzer. Stability of the double gy-
roid phase to nanoparticle polydispersity in polymer-tethered nanosphere
systems. Soft Matter, 6:1693 — 1703, 2010.

Jack P.C. Kleijnen. Kriging metamodeling in simulation: A review. Eu-
ropean Journal of Operational Research, 192(3):707 — 716, 2009. ISSN
0377-2217.

Carlos Cotta and Jano van Hemert, editors. Recent Advances in Evo-
lutionary Computation for Combinatorial Optimization, volume 153 of
Studies in Computational Intelligence. Springer, 2008.

Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyper-
bolic partial differential equations. Journal of Computational Physics, 53
(3):484 — 512, 1984.

M. J. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82:64—-84, May 1989.
Yao Zheng. Automatic mesh generation: Application to finite element
methods, by p. 1. george, wiley, new york, 1991. no. of pages: X + 333.
isbn 0-471-93097-0. International Journal for Numerical Methods in En-
gineering, 38(14):2483-2484, 1995.

I. G. Rosenberg and F. Stenger. A lower bound on the angles of trian-
gles constructed by bisecting the longest side. Math. Comp., 29:390-395,
1975.

M. Cecilia Rivara. Algorithms for refining triangular grids suitable for
adaptive and multigrid techniques. International Journal for Numerical
Methods in Engineering, 20(4):745-756, 1984.

MATLAB and Partial Differential Equation Toolbox. version 7.12.0.635
(R2011a). The MathWorks Inc., Natick, Massachusetts, 2011.

M. Herceg, M. Kvasnica, C.N. Jones, and M. Morari. Multi-
Parametric Toolbox 3.0. In Proc. of the European Control Con-
ference, pages 502-510, Ziirich, Switzerland, July 17-19 2013.
http://control.ee.ethz.ch/ mpt.

Carolyn L. Phillips and Gregory A. Voth. Discovering crystals using
shape matching and machine learning. Soft Matter, 9:8552—-8568, 2013.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

12

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

